
PAGE 1©JSCRAMBLER

Preventing
magecart attacks
A info sheet by Jscrambler

http://

PAGE 2©JSCRAMBLER

Magecart

“Magecart” refers to a collective of cybercriminal groups that inject digital credit card
skimmers on e-commerce and payment websites. These groups have been active
since 2015, but have gained momentum from 2018 onwards.

In a Magecart attack, attackers inject the skimmer (through malicious JavaScript code)
into a company’s payment page. This code actively listens to events that happen on
the page and collects credit card details whenever a user submits them in a form
(event hijacking). These details are then sent to attackercontrolled drop servers. During
this whole process, neither the end-user nor the company have any awareness that the
attack took place. Because of this, many Magecart attacks remain active for months
before being detected and taken down.

There are two main attack approaches: first-party and third-party. In a first-party attack,
malicious actors gain access to the victim’s website and directly place the skimmer
in the payment page. In a third-party attack, this malicious code is injected through
a third-party provider that the victim company is using.

Third-party Magecart attacks are especially critical because they don’t require a
firstparty server breach or direct access to the company’s website. Even companies
with robust Web Application Firewalls and server-side security are susceptible to these
attacks because they exploit client-side security weaknesses.

PREVENTING MAGECART ATTACKS

$1.3 B+
business losses from

known Magecart
attacks.

$230M
GDPR fine on British

Airways following a 2018
Magecart attack.

104 Days
average time during

which Magecart
skimmers remain active

before discovery.

A major global business threat

PAGE 3©JSCRAMBLER

The client-side security gap

Third-party Magecart attacks are a prime example of web supply chain attacks - a
type of attack where malicious actors are able to find and exploit the weakest link of a
company’s web supply chain.

For example, attackers can easily find out that their target is using a specific live chat
widget on their website. Then, if they manage to breach the supplier of this widget
(which typically is an easier task considering that many of these suppliers are very
small and have tiny security budgets), they can hide the skimmer inside the widget’s
source code and that malicious code ships down the supply chain and runs directly on
the target company’s website.

PREVENTING MAGECART ATTACKS

Most third-party code
providers don’t have
enterprise-grade security
systems.

Every piece of third-party code that a
company uses in its website can become a
vehicle for Magecart attacks. This not only
includes website scripts like Analytics,
Ads, and widgets, but also code libraries
used during the development process.

Despite a great push to spread awareness on how to properly address Magecart, new
attacks are emerging every week and getting more sophisticated. Companies are
gradually understanding the need to think outside the firewall and looking for client-
side security solutions.

Given the wide range of existing security solutions that attempt to prevent Magecart
attacks, it’s crucial to understand how each approach is able to (or fails to) tackle these
security threats, as summarized below.

Why most security approaches fail

PAGE 4©JSCRAMBLER

PREVENTING MAGECART ATTACKS

Domain sinkholing

Virtual iframes

Content security policy (CSP)

Subresource integrity(SRI)

Approach: Redirects the flow of
requests to other servers, preventing the
connection to attackers’ drop servers.

Limitations: Signature-based.
Bypassable by changing the attack
injection.

Approach: Isolates third-party code
inside individual IFrames, filtering events
based on a static whitelist.

Limitations: Introduces performance
drops and new race conditions that can
break the app.

Approach: Restrict domains and
resources based on a whitelist,
preventing the connection to attackers’
drop servers to send exfiltrated data.

Limitations: 94% of header-based
CSPs are bypassable. Can break things.

Approach: Only load scripts that pass
an integrity check, preventing the load of
a script if its content changes.

Limitations: Locks you to specific script
versions. Not all providers use SRI.

As shown before, most approaches fail to properly mitigate Magecart, especially
when we consider the last generation of skimmers which remain hidden by using bot
detection techniques.

Preventing Magecart attacks altogether is a near-impossible task. There are too many
ways in, especially when we consider attacks that originate from thirdparty code. As
so, conceptually, the best approach is to be able to detect and block the malicious
behavior that Magecart attacks inflict upon a web page.

Behavior-based magecart mitigation

PAGE 5©JSCRAMBLER

PREVENTING MAGECART ATTACKS

Jscrambler Webpage Integrity (WPI) does this by using rule-based behavior control.
WPI detects several different types of malicious behavior - both in terms of resources
and network events - which happen in any Magecart attack. Then, using fine-grained
permission levels (based on high-level assumptions and userdefined rules), WPI can
block, in real-time, any malicious behavior on the client-side of web applications -
including Magecart attacks.

#1 New
unknown script

When a new unknown

script runs on the
website >

Webpage Integrity can
block the script

#2 Existing
script

When an existing script
changes its behavior >

Webpage Integrity can
block the script

#3 Suspicious
outbound

event

When a suspicious
outbound network
event is detected >

Webpage Integrity can
block the connection

Because of this approach, Jscrambler WPI can detect/block Magecart attacks in
3 main touchpoints:

Why choose Jscrambler WPI?

Unlike the security approaches presented earlier, Jscrambler WPI is holistic - it can be
readily employed to detect and mitigate a wide range of client-side attacks. This holistic
approach to Magecart detection and mitigation also leads to reduced false positives,
easier maintenance and configuration, and no need for signatures. This is achieved by
crossing multiple information sources gathered by WPI, including resources loaded to
the page, DOM changes, and code poisoning.

Holistic solution

PAGE 6©JSCRAMBLER

PREVENTING MAGECART ATTACKS

If you want to know more about how Jscrambler can help you prevent
client-side attacks, don’t hesitate to contact us.

hello@jscrambler.com | +1 650 999 0010

WPI’s agent is embedded in every user session, giving full visibility of the client-side in
real-time. The WPI dashboard provides multiple views, including a detection live feed,
an explorer, and an inventory. These allow a comprehensive full-scope view of alerts
from a macro outlook to a detailed description. The collected information can easily be
sent to a SIEM to be further explored, with different filters and visualizations.

Jscrambler WPI is the only solution to include extremely resilient code protection of
the real-time monitoring agent. As a result, attackers cannot bypass detection. This
resilient JavaScript protection can be extended to the source code of the application,
to close yet another gap in client-side security: JavaScript code tampering and
reverse-engineering.

WPI is successfully employed by major online retailers, airlines and financial institutions
to detect and stop client-side attacks like Magecart and web supply chain attacks.

Build reports & get insights

Secured with resilient code protection

Trusted by industry leaders

