
Client-Side Mitigation of
Web Supply Chain Attacks

A WHITE PAPER BY JSCRAMBLER

+1 650 999 0010 hello@jscrambler.com jscrambler.com

mailto:hello@jscrambler.com

Mitigating Web Supply Chain Attacks
like Magecart

Table of Contents

Executive Summary 2

Introduction 3
Code Reuse 3
Integrating Third-Party Scripts 4
Weaknesses and Risks 6

Supply Chain Attacks 8
Case Study 1 — Magecart (British Airways, Ticketmaster, others) 10
Case Study 2 — BrowseAloud (ICO, others) 12
Case Study 3 — event-stream (Copay) 13

How to Address 14
JavaScript Protection and Webpage Monitoring 15
Limiting Third-Party Scripts and Code Dependencies 20
Assessing Third-Party Suppliers’ Security 21
Content Security Policy (CSP) 21
Subresource Integrity (SRI) 22
A Multi-Layered Mitigation Approach 23

Contact Us 24

Page 1

Mitigating Web Supply Chain Attacks
like Magecart

Executive Summary

The ongoing Digital Transformation is pushing businesses of all sectors to bring to

market highly innovative digital products. As development teams are pushed to

develop advanced applications in record time, using third-party code has become a

standard practice — 66% of modern applications’ code comes from third-parties.

Often single developers or small companies, these providers don’t have

enterprise-grade security systems. Yet, this code has the same permissions as the

code developed in-house. As attackers clearly identify this weakest link in the Web

supply chain, major web supply chain attacks have taken place recently, including

the Magecart attacks on British Airways and Macy’s.

Companies must address Web Supply Chain Attacks now, as the attack surface of

their applications has increased significantly. Mitigating Web Supply Chain Attacks

like Magecart requires a multi-layered approach, including CSP, SRI, limiting and

vetting external code, and using a holistic client-side security solution for JavaScript

protection and webpage monitoring.

Jscrambler provides a complete JavaScript Application Shielding and Webpage

Monitoring solution to detect client-side code injections and prevent tampering in

real-time. As so, it enables companies to react to Web Supply Chain Attacks as they

happen, mitigating them before end-users are affected.

Page 2

Mitigating Web Supply Chain Attacks
like Magecart

Introduction

Today, innovation and disruption are major drivers of business performance. The

ongoing digital transformation has urged businesses across all sectors to invest in

their own digital platforms.

This has reshaped the software development industry itself. Today, software

development teams are pushed to deliver highly advanced applications in record

time — developing everything in-house has stopped being a sustainable practice. As

the NIST puts it, “This ecosystem has evolved to provide a set of highly refined,

cost-effective, reusable ICT solutions ”. These “ reusable solutions” encompass two1

dimensions: code libraries/frameworks and third-party scripts.

Code Libraries and Frameworks

Mainstream programming languages such as JavaScript led to the emergence of an

open-source ecosystem where code sharing and reuse have become standard

practices. Today, JavaScript libraries and frameworks in the Node ecosystem are two

major promoters of development speed.

Creating a boilerplate application with a popular JavaScript framework such as

React.js means installing over 1,000 code dependencies — which are mostly

open-source and maintained by volunteers. While this enables developers to build

on top of solid code, it greatly increases the attack surface of the application.

1 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf

Page 3

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161.pdf

Mitigating Web Supply Chain Attacks
like Magecart

Third-Party Scripts

Another very common practice in web development is integrating third-party scripts

to access a myriad of services without having to develop them in-house. A typical

application can rack up several external scripts to provide this extra functionality with

little extra effort .2

Two-thirds of code in web
applications today are
third-party scripts.

2 https://discuss.httparchive.org/t/js-requests-size-1st-party-vs-3rd-party/1509

Page 4

https://discuss.httparchive.org/t/js-requests-size-1st-party-vs-3rd-party/1509

Mitigating Web Supply Chain Attacks
like Magecart

A comprehensible example here would be a live chat widget. Integrating this service

requires loading the external script from the web app’s client-side — enabling the

application to directly load the third-party code and grant it access to events that are

triggered by the end-users (button onclick, mouseover, form submit, among others).

JavaScript libraries/frameworks and third-party scripts are powering most

modern applications. But what happens when these third-party developers or

providers are attacked?

Page 5

Mitigating Web Supply Chain Attacks
like Magecart

Weaknesses and Risks

Amidst this rush to maximize development speed, security has remained an

afterthought. Open-source ecosystems are based on collaboration: projects are

developed and maintained by volunteers, which have full control to modify their

code. But what happens when we consider a project that is a dependency in a major

framework such as React.js?

A single developer
with malicious purposes
can breach thousands of
enterprises by compromising
a single component which
is used as a dependency.

A compromise of a direct dependency of a major framework may be detected and

fixed quickly. However, a dependency can require other dependencies, and so on.

Escalating through this web supply chain, attackers can trace dependencies to a

smaller, not well-maintained project and compromise it, reaching their targets

downstream.

Page 6

Mitigating Web Supply Chain Attacks
like Magecart

The risk of integrating third-party scripts is similar: if the third-party script provider

gets breached by attackers who inject malicious code, all applications that load this

script will start serving this malicious code to their end-users. Third-party code is

granted the same privileges as all the code developed in-house. This major risk urged

OWASP to feature “Using Components with Known Vulnerabilities” on their Top 10

Application Security Risks .3

Most third-party
code providers don’t
have enterprise-grade
security systems.

It’s not likely that attackers compromise the scripts of companies the size of Google.

But what about the majority of providers, which are small companies or developers?

When we consider this scenario, it’s clear that most third-party code providers don’t

have enterprise-grade security systems and become appealing targets.

Attackers have become able to breach high-profile companies without ever having

to touch their servers or code. The holy grail is now to target third-party

dependencies or scripts, in what we have come to know as Web Supply Chain

Attacks.

3 https://www.owasp.org/index.php/Top_10-2017_Top_10

Page 7

https://www.owasp.org/index.php/Top_10-2017_Top_10

Mitigating Web Supply Chain Attacks
like Magecart

Web Supply Chain Attacks

A Supply Chain Attack is characterized as “an intentional malicious action taken to

create and exploit a vulnerability in ICT (hardware, software, firmware) at any point

within the supply chain” .4

In software development, these attacks typically rely on inserting malicious code into

a code dependency or third-party service. Common attack objectives include:

1. Violating confidentiality (intercept): gain unauthorized access to information;

2. Reducing integrity (modify, fabricate): cause the system to malfunction; cause

end users to mistrust the information and information system; or cause end

users to do unintended things;

3. Reducing availability (degrade, interrupt): making the system and

information or resource unavailable when it is needed;

4. Using resources for illegitimate purposes (unauthorized use or usurpation):

use for potentially harmful reasons and violate the confidentiality, integrity, or

availability of other resources that trust the information asset being attacked

by the adversary (as they don’t know it is compromised).

When compared to typical cyber attacks, Web Supply Chain Attacks provide three

main advantages to attackers:

1. Lack of privilege separation on the Web — all pieces of third-party code have

the same privileges as code that is developed internally. As a result, external

code can harvest any user input, add extra code, hijack events, fully modify the

4

https://www.mitre.org/sites/default/files/publications/pr-18-0854-supply-chain-cyber-resiliency
-mitigations.pdf

Page 8

https://www.mitre.org/sites/default/files/publications/pr-18-0854-supply-chain-cyber-resiliency-mitigations.pdf
https://www.mitre.org/sites/default/files/publications/pr-18-0854-supply-chain-cyber-resiliency-mitigations.pdf

Mitigating Web Supply Chain Attacks
like Magecart

behavior of the web page, tamper with other code in the same scope, and

contact any external domain, possibly exfiltrating data.

2. Targeting multiple companies with a single attack — the same dependency

or script is used by multiple companies, greatly increasing the potential return

on investment of the attack. Recent data shows that a breach to 20 maintainer

accounts would trigger an attack to more than half of the entire Web

ecosystem .5

3. Remaining undetected by perimeter defenses — these attacks are often

initiated by an embedded change to a component which is trusted by default;

an approved delivery mechanism such as a software update can deliver the

Web Supply Chain Attack without arising any suspicion by network defenders.

5 https://www.usenix.org/system/files/sec19-zimmermann.pdf

Page 9

https://www.usenix.org/system/files/sec19-zimmermann.pdf

Mitigating Web Supply Chain Attacks
like Magecart

Case Study 1 — Magecart (British
Airways, Ticketmaster, others)

“Magecart” is an umbrella of cybercriminal groups which have been injecting digital

credit card skimmers on e-commerce websites. In 2018 alone, Magecart attacks on

Ticketmaster and British Airways (BA) stole details of at least 420,000 credit cards.

The BA attack was achieved by injecting malicious code on the Modernizr JavaScript

library that the company was loading on its website and mobile app. This malicious

code was able to detect when credit card details were written and send them to

attackers’ servers. Analysis of this attack clearly shows that it specifically targeted the

company, as attackers identified and exploited this weak link on BA’s supply chain.

However so, the groups’ modus operandi is usually to infect as many third-party

script providers as possible, as the malicious code itself shows:

With the regex check, the skimmer activates in web pages whose URL matches

usual payment page keywords (onepage, checkout, onestep). It also grabs

information inserted in any input fields to target a greater number of websites.

The Ticketmaster breach of June 2018 had this approach. Magecart compromised

two third-party scripts — SociaPlus and Inbenta — to steal credit card details of

Page 10

Mitigating Web Supply Chain Attacks
like Magecart

40,000 customers, a number greatly influenced by the two months that took the

company to identify the breach. According to RiskIQ, Magecart attacks had already

been detected over 2 million times as of 2019. In March 2020, with the pandemic

accelerating the growth of e-commerce, web skimming grew by 26% . The most6

noteworthy statistic about these attacks is that companies take, on average, 22 days

to detect the breach, with some companies taking several months.

During 2020 and 2021, several other high-profile companies were blindsided by

Magecart attacks, including Tupperware, Claire’s, Intersport, Warner Music Group,

and JM Bullion.

Additional details about Magecart attacks can be found on our Info Sheet.

6 https://blog.malwarebytes.com/cybercrime/2020/04/online-credit-card-skimming-increases-by-26-in-march/

Page 11

https://media.jscrambler.com/resources/Jscrambler-Info-Sheet-Preventing-Magecart-Attacks.pdf
https://blog.malwarebytes.com/cybercrime/2020/04/online-credit-card-skimming-increases-by-26-in-march/

Mitigating Web Supply Chain Attacks
like Magecart

Case Study 2 — BrowseAloud (ICO,
others)

In February 2018, a Web Supply Chain Attack exploited over 4000 websites, including

government bodies such as the UK’s Information Commissioner’s Office (ICO).

The attack got affected websites to serve the CoinHive cryptocurrency miner to their

end users — using users’ computational power without their consent to generate

cryptocurrency for attackers’ benefit.

The attack was performed by injecting the CoinHive miner into a third-party script

(BrowseAloud), which all affected websites were loading. The change to the script

passed on as a regular update and all 4000+ websites automatically accepted this

new script version by default — an imprudent yet standard practice.

Inducing the end-users of affected websites to mine cryptocurrency without their

consent is illegal and prompted affected institutions and companies to shut down

their websites while the issue remained unresolved by the third-party provider.

Unlike the Magecart attacks, no user data was stolen on this attack. Still, affected

entities faced backlash over the incident and had to temporarily take down their

services, effectively keeping a permanent dent on their reputation.

Page 12

Mitigating Web Supply Chain Attacks
like Magecart

Case Study 3 — event-stream (Copay)

Both aforementioned attacks inserted malicious code into a third-party script. The

November 2018 event-stream incident featured a compromised code dependency.

Copay, a cross-platform cryptocurrency wallet, is built with JavaScript and relies on

several open-source modules. One such module, event-stream, was maintained by a

single developer who eventually dropped the project and legitimately passed control

to a volunteer. This new developer inserted a direct dependency in the event-stream

module which contained malicious code. As so, the event-stream module began

serving malicious JavaScript code to all projects which had it as a dependency.

While the malicious code affected thousands of projects, it had been created to

target Copay’s specific development environment setup. With no visibility over the

compromised code, Copay inadvertently put the malicious code in production in its

crypto wallet. As a result, account data and private keys from Copay accounts with a

balance over 100 Bitcoin or 1000 Bitcoin Cash were stolen and sent to attackers.

The attack itself generated a gigantic response from the community. Using

third-party code (dependencies) poses major security risks that are often

disregarded. The event-stream incident came to show that attacks can breach the

supply chain at its onset and remain undetected even after going to production and

reaching end-users.

Page 13

Mitigating Web Supply Chain Attacks
like Magecart

How to Address

The Supply Chain Attacks and Resiliency Mitigations report by the MITRE

Corporation identifies several cyber resiliency techniques for mitigating Web Supply

Chain Attacks, including:

● Adaptive Response — Optimize the organization’s ability to respond in a

timely and appropriate manner to (...) attacks, thus maximizing the ability to

maintain mission operations, limit consequences, and avoid destabilization.

● Analytic Monitoring — Gather, fuse, and analyze data on an ongoing basis

and in a coordinated way to identify potential vulnerabilities, adverse

conditions, stresses, or attacks, and damage;

● Coordinated Defense — Ensure that failure of a single defensive barrier does

not expose critical assets to threat exposure. Require threat events to

overcome multiple safeguards (...);

● Deception — Mislead, confuse, or hide critical assets from the adversary;

● Diversity — Use heterogeneity to minimize common mode failures,

particularly attacks exploiting common vulnerabilities;

● Redundancy — Provide multiple protected instances of critical resources;

● Substantiated Integrity — Detect attempts by an adversary to deliver

compromised data (...) as well as successful modification or fabrication;

● Unpredictability — Make changes randomly or unpredictable;

Foremost, mitigating Web Supply Chain Attacks requires a security-in-depth

approach. Investing resources on periphery defenses alone is not an adequate

approach. The same goes for SAST (Static Application Security Testing). Web Supply

Chain Attacks exploit weaknesses - not vulnerabilities - to introduce malicious logic

into existing code. As so, it remains undetected by SAST. Since these attacks

Page 14

Mitigating Web Supply Chain Attacks
like Magecart

frequently operate through changes that are manifested on the client-side, investing

in client-side security becomes a key step of the process.

JavaScript Protection and Webpage
Monitoring

Leading client-side security solutions such as Jscrambler provide a holistic client-side

approach to meet the mitigations outlined by MITRE.

Jscrambler Code Integrity module serves as a first-line of defense to prevent Web

Supply Chain Attacks. The Cyber Attack Lifecycle (shown below), begins with a

“Recon” phase, where attackers search for weaknesses to exploit.

Jscrambler Code Integrity uses obfuscation techniques, code locks, and

self-defensive features to protect JavaScript code and block attackers from

debugging the code in a Recon attempt. This is a best practice and an OWASP

recommendation for Mobile Applications that Jscrambler enables for7

7 https://www.owasp.org/index.php/Mobile_Top_10_2016-M9-Reverse_Engineering

Page 15

https://www.owasp.org/index.php/Mobile_Top_10_2016-M9-Reverse_Engineering

Mitigating Web Supply Chain Attacks
like Magecart

JavaScript-based applications, whether they are running on a mobile device, web

browser, or server-side.

Original Code

(function() {
function add1(element, index, array) {

array[index]=element+1;
}
function apply(8functions, integers) {

if(!Array.isArray(functions)) {
integers.forEach(functions);

}

Obfuscated Code

/*...*/ ff)<<W);s=this[a](s,B);s=((s&0x1ff`
= A)|(s>>>Q` <)f);P^=s;P=((P&0x7`
H\"y)|(P>>>h);P=(P*z+((129.,0x187)<(91,0x1E0
)?(0x72,0xe6546b64):(120.7E1,0x35)))|R8H.j3H
;}s=` ##switch (t%x){case
X:s=(J[I](H+v)&0xff)<<c;` 8 v:s|` 5$R8H.t3H`
;$e` >!` 0\"` ?&`
;\";s=this[a](s,B);s=((s&0x1ff` [A)|(s>>>Q`
<)f);P^=s;}P^=t;P^=P>>>c;P` :$P,0x85ebca6b`
G P>>>y` 2*c2b2ae35` 8$c;return P;}};var
r=K.T(\"3af\")?\"\":{\'F\':{(49.80E1>(0xAF,1
3.)?(22.40E1,0):65.>(137.8E1,0x209)?(74,0x84
):(0x1AF,46` K)),E=L>o,G;for
(;n0N<l0N.length;n0N++) /*...*/

This code protection is applied in a polymorphic fashion. As so, each new version of

the protected code will be entirely different, which goes in line with the Deception,

Diversity, and Unpredictability recommendations by MITRE.

Moving beyond the Recon stage, mitigating Web Supply Chain Attacks during

runtime can be achieved with Jscrambler’s Webpage Integrity module.

Webpage Integrity is a client-side monitoring solution that detects any tampering

to the DOM during runtime, independently of its delivery mechanism. As such,

Page 16

Mitigating Web Supply Chain Attacks
like Magecart

Webpage Integrity detects in real-time when any compromised third-party script or

code dependency attempts to exploit the application’s end user.

Framing this into some of the major Web Supply Chain Attacks to date:

● For Magecart attacks, Webpage Integrity immediately registers changes to

the DOM when the skimmer loads on the end-users’ device. It triggers a

warning in real-time to the affected companies, with details that a serious

credit card skimming threat is running on the payment pages. Companies

can react in real-time to the attack, removing the infected script or blocking

the compromised pages before the attack is able to reach a second end-user.

● For cryptojacking attacks such as the BrowseAloud (ICO) one, Webpage

Integrity identifies the injected crypto miner script as soon as it starts being

served. This enables companies to immediately block the malicious script

without shutting down their application and before users are affected.

Page 17

Mitigating Web Supply Chain Attacks
like Magecart

● For attacks that compromise a code dependency, once a compromised

version of the application goes into production, Webpage Integrity is able to

identify it, provided that the attack results in a malicious change to the DOM

— which it did on the event-stream incident. Much like the previous examples,

this real-time detection promotes a timely and accurate response.

In the current panorama of Application Security, there’s no infallible way of being

sure malicious code or markup isn’t injected into companies’ applications. The next

best thing is to gain visibility about malicious injections and be able to react in

real-time.

Past Web Supply Chain Attacks
have one common metric
that contributed to their
magnitude: the very long time
from attack to detection.

By detecting Web Supply Chain Attacks in real-time, Webpage Integrity enables

companies to react instantly and mitigate them before any serious damage occurs.

Jscrambler’s Code Integrity and Webpage Integrity solutions provide a holistic

client-side security solution to mitigate Web Supply Chain Attacks — both proactively

Page 18

Mitigating Web Supply Chain Attacks
like Magecart

and reactively. Jscrambler can be easily integrated with existing SIEM, enabling an

in-depth security solution that is simple to deploy and easy to use.

Page 19

Mitigating Web Supply Chain Attacks
like Magecart

Limiting Third-Party Scripts and Code
Dependencies

It’s unfeasible to advocate putting an end to third-party code, even if it is the simplest

way to prevent Web Supply Chain Attacks. The next best option is to limit its use.

Development teams must take a “lean” approach to address dependencies: sticking

to the vital ones which can’t be developed/maintained in-house. The same goes for

third-party scripts; these represent add-ons which are not crucial to the application.

Companies must prevent integrating unnecessary, risky, or deprecated scripts.

Each extra code dependency
or external script must be seen
as a substantial increase to the
application’s attack surface.

Page 20

Mitigating Web Supply Chain Attacks
like Magecart

Assessing Third-Party Suppliers’
Security

Even with a “lean” approach to third-party code, some will still prevail out of

necessity. Organizations can still have some control over minimizing these risks. A

suitable approach is to assess the security level of third-party suppliers during the

procurement phase, on the following dimensions:

● JavaScript code security — the supplier should have in place a solution to

protect JavaScript code, mitigating reverse-engineering and counterfeit code,

as per MITRE’s recommendations for Deception and Substantiated Integrity.

The JavaScript security level can be assessed with peer-validated checklists .8

● JavaScript code polymorphism — the supplier should guarantee that its

protected code is polymorphic, i.e., taking different forms for each new build.

This helps increase the script’s Redundancy and Unpredictability.

● Subresource Integrity — the supplier should provide the SRI token, enabling

the procuring company to use SRI to ensure the integrity of loaded scripts.

● Content Security Policy — the supplier should have a CSP in place to limit the

external sources to which they can send/receive content.

Content Security Policy (CSP)

CSP limits the external sources to which a website can connect. Trusted sources are

whitelisted and every other connection is blocked.

8 https://github.com/pfortuna/javascript-software-protections-checklist

Page 21

https://github.com/pfortuna/javascript-software-protections-checklist

Mitigating Web Supply Chain Attacks
like Magecart

In past Web Supply Chain Attacks, this simple security approach would have been

able to protect the infected websites from data exfiltration, by blocking the external

address to which attackers were sending stolen data.

Despite its ease and effectiveness, CSP presents some limitations. It requires

substantial configuration and maintenance, is vulnerable to open-redirect attacks

and can be bypassed CSP altogether, namely when Man-in-the-Browser (MitB)

trojans and browser extensions are used as an attack vector.

Subresource Integrity (SRI)

Using Subresource Integrity (SRI) can serve as a simple yet effective prevention

strategy against Web Supply Chain Attacks. By checking the file integrity, the

application does not load scripts whose integrity check differs from the original,

trusted script. As so, malicious scripts won’t be loaded from third-parties and the

Web Supply Chain Attack is mitigated.

However, SRI comes with a major pitfall: it’s notably complex to apply to dynamic

code. Most third-party script providers (like Google Analytics) keep improving their

services, which results in frequent changes to the script itself. Adapting SRI to match

this dynamic nature can be burdensome and, if SRI isn’t properly set up, it can block

a perfectly safe third-party script when it receives a much needed update. Also, SRI

can be bypassed when a Man-in-the-Browser trojan is used as an attack vector.

Page 22

https://medium.com/@mazin.ahmed/bypassing-csp-by-abusing-jsonp-endpoints-47cf453624d5

Mitigating Web Supply Chain Attacks
like Magecart

A Multi-Layered Mitigation Approach

All of the mitigation strategies presented in this white paper go a long way into

mitigating Web Supply Chain Attacks. However, an effective means of mitigation

requires an approach which leverages most of these strategies.

The most advisable and effective mitigation of Web Supply Chain Attacks is a

combination of CSP, SRI, limitation of external sources, third-party vetting, and

resilient JavaScript protection, alongside webpage monitoring and real-time

threat mitigation.

By pursuing this security-in-depth approach, companies can ensure that they gain

total visibility and control over the client-side of their applications. This effectively

translates to being able to prevent user data exfiltration and its ensuing liabilities.

Page 23

Mitigating Web Supply Chain Attacks
like Magecart

Contact Us

If you want to know more about how Jscrambler can help you

mitigate Web Supply Chain Attacks, don’t hesitate to contact us

hello@jscrambler.com

+1 650 999 0010

Jscrambler is the leader in Client-Side Application Security

Recognized in Gartner’s Market Guide for Online Fraud Detection

and in Gartner’s Market Guide for In-App Protection

Page 24

