
PAGE 1©JSCRAMBLER

JavaScript
obfuscation
checklist
Checklist for JavaScript obfuscation

http://

PAGE 2©JSCRAMBLER

JAVASCRIPT OBFUSCATION CHECKLIST

JavaScript: A ubiquitous language

JavaScript has changed drastically since it was introduced, especially when Node.
js entered the scene, along with JS frameworks such as jQuery and React. Today,
JavaScript is the backbone of Web, mobile, and even desktop apps. It paved the way
to highly advanced services such as streaming and online banking and has unlocked
new business models in sectors like Finance, eCommerce, and Healthcare.

97%
Modern web apps
using JavaScript.

100%
Fortune 500 companies

using JavaScript.

>55%
Mobile apps using

JavaScript.

Today, with cross-platform frameworks like React Native and Ionic, companies can cut
their development time and cost significantly by reusing a shared codebase for Web,
mobile, and desktop platforms.

But even with all its numerous advantages and business value, we must still consider
the changes in our threat model when using JavaScript-based web and mobile apps.

The threat of exposed JavaScript

Because client-side JavaScript must be executed by a browser in order to work, it is
exposed and anyone can access, read, and modify it. However, while it’s advisable
to keep important logic on secure execution environments (i.e. the backend), it’s often
infeasible to keep this logic out of the client-side - for example, due to the inexistence
of a back-end (mobile apps) or the need to avoid performance losses.

As a result, companies’ proprietary algorithms and logic end up running in an adver-
sarial environment, which opens the door to a series of attacks, such as automated
abuse, piracy, intellectual property theft, and data exfiltration.

PAGE 3©JSCRAMBLER

JavaScript obfuscation
The security threats of unprotected JavaScript source code have widely different
degrees of complexity and impact on the business. To mitigate these threats, a
suitable approach is protecting the code.

Source code protection is mentioned in some of the most relevant guides for
application security. Namely, the ISO 27001 information security standard states:
“Program source code can be vulnerable to attack if not adequately protected and
can provide an attacker with a good means to compromise systems in an often covert
manner.”

OWASP also advises this type of protection in its Mobile Top 10 Security Risks
guide:
“An attacker may exploit reverse engineering to (...) Reveal information about back
end servers; Reveal cryptographic constants and ciphers; Steal intellectual property;
Perform attacks against back end systems; or Gain intelligence needed to perform
subsequent code modification. In order to prevent effective reverse engineering, you
must use an obfuscation tool.”

JavaScript obfuscation can be used to transform the code into a new version that
is extremely hard to understand and reverse-engineer, but that preserves its original
functionality. Typically, JavaScript obfuscation should include a combination of
several different transformations and can be measured using three different metrics:

 → Potency: How hard it is for a human to understand the obfuscated code.

 → Resilience: How hard it is to revert the transformed code to its original form.

 → Cost: Impact on the application’s file size and execution time.

JAVASCRIPT OBFUSCATION CHECKLIST

https://www.isms.online/iso-27001/annex-a-9-access-control/
https://owasp.org/www-project-mobile-top-10/

PAGE 4©JSCRAMBLER

JAVASCRIPT OBFUSCATION CHECKLIST

Obfuscation Verifications

JavaScript obfuscation checklist

There are many different possible approaches to JavaScript obfuscation. Below,
we highlight the several verifications that should be done to evaluate a suitable
JavaScript obfuscation product.

ACTION

1.1
Verify that the identifiers of the application (e.g. variables and function names)
and of native APIs (DOM, Node.js API) are being renamed.

1.2
Verify that identifiers are replaced across multiple files types (e.g. HTML and
JavaScript files).

1.3
Verify that, when eval or eval-like expressions are being used, names con-
tained in the evaled expression have also been renamed accordingly.

1.4
Verify that dead code is added to the application to increase confusion in the
program analysis.

1.5
Verify that the application’s control flow is obfuscated and flattened and that
it’s no longer trivial to distinguish between if’s, Else’s, While’s and For’s and
where the control flow is going next.

1.6
Verify that the control flow obfuscation makes intra-function/intra-module
control flow become inter-function (e.g. by outlining functions).

1.7
Verify that the control flow obfuscation is protected by resilient and opaque
predicates that are not easily understood by a human or easily deobfuscated
using static analysis.

1.8
Verify that the control flow obfuscation generates alternative branches that
are selected at runtime.

1.9
Verify that the control flow obfuscation makes inter-function/inter-module
control flow become intra-function (e.g. by inlining functions/modules)

1.10
Verify that booleans, numbers, objects, arrays, strings, and regex expressions
become invisible to humans or are otherwise encoded beyond recognition.

1.11
Verify that, in scenarios where sensitive data is being exchanged, data files
(e.g. JSON, images) or streams are encoded or encrypted, only being
decoded or decrypted in runtime.

1.12
Verify that each new code protection outputs different obfuscation results,
with unpredictable changes to their order and frequency.

PAGE 5©JSCRAMBLER

JAVASCRIPT OBFUSCATION CHECKLIST

ACTION

1.13 Verify that any dead code injected is diverse across different protections

1.14
Verify that the additional diversity can be obtained by changing the order or
frequency of the protection transformations.

1.15
Verify that the order of the functions inside each file is different across
different protections.

1.16
Verify that statements inside a certain scope change their relative position
across protections.

1.17
Verify that predicates are resilient and opaque predicates that are not easily
understood by a human nor easily reversed using static analysis.

1.18
Verify that the resulting obfuscation cannot be reversed using reverse
engineering or code optimization tools.

1.19
Verify that the protection is resilient against partial evaluation and symbolic
execution-based reverse engineering tools and techniques, and that their
resulting code and its control flow is not simpler to read and to understand.

1.20 Verify that the app detects the presence of code injection tools, hooking
frameworks, and debugging servers.

Data and Code Integrity Verifications
Although JavaScript obfuscation brings an important level of security to web and
mobile applications, additional protective layers should be added, especially in
applications that handle sensitive data and operations.

Specific verifications should be made to attest to the level of integrity of the code and
data, as outlined below.

ACTION

2.1

Verify that the protection injects multiple functionality independent integrity
checks throughout the protected code that, in the context of the overall
protection scheme, forces adversaries to invest a significant manual effort to
be able to tamper with the code or data.

2.2
Verify that the integrity checks have good coverage of all the JavaScript in the
application, including inline JavaScript.

PAGE 6©JSCRAMBLER

JAVASCRIPT OBFUSCATION CHECKLIST

ACTION

2.3
Verify that no checksums or encryption keys can easily be found in the code,
namely in visible strings or inside objects, using static analysis tools.

2.4 Verify the presence of integrity checks that are resilient to code poisoning.

2.5
Verify that native API calls (e.g. Web Cryptography API, DOM, Node.js) are also
subject to integrity checks.

2.6 Verify that the integrity checks are diverse across different protections.

Runtime Protection Verifications
Even with the security layers presented before, a relentless attacker may try to
understand the code logic of obfuscated code by debugging it and experimenting
with it at runtime. Runtime protection techniques should be added to the code in
order to give it anti-debugging and anti-tampering capabilities, as outlined
below.

ACTION

3.1
Verify that there are multiple functionally independent debugging defenses
that, in the context of the overall protection scheme, force adversaries to
invest a significant manual effort to enable debugging.

3.2
Verify that, if the goal of obfuscation is to lock the code to a certain envi-
ronment (e.g. OS, Browser, Domain) and that it takes a significant amount of
manual work to remove all the checks.

3.3
Verify that, if the goal of obfuscation is to lock the code to a date interval and
that it takes a significant amount of manual work to remove all the checks.

3.4
Verify that the app implements a ‘device binding’ functionality when a mobile
device is treated as being trusted. Verify that the device fingerprint is derived
from multiple device properties.

3.5
Verify that logs, debug messages and stack traces have been eliminated,
making the debugging activity significantly harder.

3.6

Verify that the protection, upon the detection of an attack (e.g. running in an
unauthorized environment, code tampering), can optionally execute a custom
callback (e.g. terminate the session, remove a file, send a request to a remote
API).

PAGE 7©JSCRAMBLER

JAVASCRIPT OBFUSCATION CHECKLIST

ACTION

3.7
Verify that the protection, upon the detection of an attack (e.g. running in an
unauthorized environment, code tampering), can optionally trigger a real-time
notification with details about the attack.

3.8
Verify that the app detects, and responds to, being run in an emulator using
any method.

3.9
Verify that the detection mechanisms (including responses to tampering,
debugging, and emulation) trigger responses of different types, including
delayed and stealthy responses that don’t simply terminate the app.

PAGE 8©JSCRAMBLER

JAVASCRIPT OBFUSCATION CHECKLIST

Frequently Asked Questions
Can’t I just encrypt JavaScript?

Isn’t it better to avoid having client-side JavaScript?

Doesn’t SAST/DAST protect JavaScript?

Encrypting JavaScript doesn’t work because the browser always needs to render JS
so that it works. If we have a decryption key we need to supply to the browser, that key
can be compromised and the code easily accessed.

As a rule of thumb, if JavaScript has sensitive data that shouldn’t be accessed by
third-parties, it should be kept confined to trusted execution environments such as the
backend servers. However, this often is not a possibility - like in cases where there’s no
backend.

Another common issue is that server calls take time and, in services where
performance is crucial - such as streaming, e-commerce, or gaming - storing all
JavaScript on the server is not an option.

Security testing tools like SAST and DAST are widely used to inspect the application’s
source code, check if it contains any vulnerabilities, and attempt to fix them.

Considering that the typical JavaScript application today has well over 1000 code
dependencies and an absolute mess of sub-dependencies, development teams need
SAST and DAST to gain visibility over potentially insecure code.

However, even if we find and fix every single vulnerability in our JavaScript code, at
the end of the day our JavaScript is still plain, easy to understand code.

PAGE 9©JSCRAMBLER

JAVASCRIPT OBFUSCATION CHECKLIST

Why Choose Jscrambler?

Expertise: Jscrambler started working on JavaScript code protection in 2009, more
than 10 years ago. Many innovative features and patents in this area were introduced
by Jscrambler’s continuous R&D efforts. This R&D team continuously updates
Jscrambler to resist all reverse engineering tools and techniques.

Unmatched capabilities: Jscrambler Code Integrity has both the largest and most
powerful set of JavaScript code transformations, many of which are unique, like
Jscrambler’s Control Flow Flattening, Self-Healing, and robust source maps. Other
code protection tools often break the code and are far less resilient.

JavaScript threat monitoring: This innovative new feature actively monitors any
attempts to attack protected code and shows real-time alerts on the Jscrambler
dashboard when its anti-debugging and anti-tampering features stop an attack.

Maturity: With a sophisticated testing process, Jscrambler ensures every new feature
is compatible with all browsers, JS frameworks, and libraries. If a single test fails, our
build fails. This means that only pristine releases reach Jscrambler clients.

Proven in demanding scenarios: Jscrambler Code Integrity is trusted by the Fortune
500 and thousands of businesses globally, totaling over 500,000 code builds
protected by Jscrambler.

Endorsed by the market: Gartner, a global research and advisory firm, has
consistently recognized Jscrambler in the Market Guides for In-App Protection and
Online Fraud Prevention.

If you want to know more about how Jscrambler can help you prevent
client-side attacks, don’t hesitate to contact us.

hello@jscrambler.com | +1 650 999 0010

